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A framework for calculating the k-conserving component of K edge resonant x-ray emission spectroscopy
measurements of anisotropic solids is presented. The crystalline band structure is calculated using a quasiparticle
self-consistent GW implementation. Coherent spectra are calculated in the Kramers-Heisenberg formalism, and
the effect of the experimental geometry in the dipole approximation is fully considered. Coherent spectra are
calculated for ZnO and successfully compared to previously measured data.
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I. INTRODUCTION

X-ray emission spectroscopy (XES) is a powerful tool for
probing the bulk electronic structure of crystalline systems.
The photon-in–photon-out nature and thus large penetration
depth of the technique means the bulk band structure is
probed,1 and insulators can be investigated as well as metals.
The general two-step x-ray emission process begins with x-ray
stimulated excitation of a core hole, followed by the decay
of a valence band state to fill the empty state. When the core
electron is excited into bands close to (∼10 eV) the conduction
band minimum (CBM) this process becomes resonant and a
coherent term is measured along with the XES. In this regime
we are measuring resonant XES (RXES). General overviews
of RXES and the theory behind it can be found in Refs. 2
and 3. However, there are few reports in the literature where
the coherent part of the RXES (CRXES) have actually been
calculated with ab initio techniques, especially where the
electronic structure requires an in-depth treatment.4–7

In this paper we present the results of an implementation of
the Kramers-Heisenberg equation on top of a quasisiparticle
self-consistent- (QS) GW band-structure calculation. We give
full consideration to the effect of dipole selection rules on the
incoming and outgoing photons in different polarization and
experimental geometries, enabling us to calculate spectra that
are directly comparable to experiment.

The theoretical results are compared to the measured
wurtzite zinc oxide (ZnO) oxygen K edge RXES. The literature
yields a number of ZnO XES studies,8,9 and the present work
can be considered a continuation of the results we first reported
in Ref. 10. We focus on wurtzite ZnO for two reasons: first,
it has shown potential for use in optoelectronic applications,11

and consequently there is interest in accurately determining
the details of its band structure; second, it has a remarkably
dispersive and anisotropic conduction band, as can be seen

in the band-structure figures below. These features mean that
for excitation energies close to the CBM, and for specific
experimental geometries, small unique areas of the Brillouin
zone (BZ) can be probed with RXES, making the material an
ideal test case.

II. EXPERIMENT

The experimental spectra reproduced in this paper were
reported in Ref. 10, where the full experimental details can
be found. Briefly, the sample was a 500 nm ZnO epilayer,
grown on epiready (0001) sapphire by plasma-assisted
molecular-beam epitaxy.12 The high crystalline quality of the
film was confirmed by a number of standard techniques.13 The
x-ray spectroscopy was performed on the undulator beamline
X1B at the National Synchrotron Light Source at Brookhaven
National Laboratory. X1B is equipped with a spherical grating
monochromator and a Nordgren-type emission spectrometer.
The X1 undulator produces light that is linearly polarized in
the horizontal plane of the laboratory (see below). The energy
resolution over the O K edge was approximately 0.20 and
0.37 eV for the incident and emitted photons, respectively.
The CRXES was extracted from the RXES by using the
standard technique of subtracting as large a fraction of
the XES possible while subject to the physical constraint that
the resulting spectra are never negative.2

The zero point of the calculated energy axis was placed
at the valence band maximum (VBM). The need for this
empirical alignment arises from the inherent difficulty in
calculating the core-level excitation of several 100 eV on
an absolute scale with a precision of 0.1 eV or better. The
experimental energy and theoretical energy scales were then
aligned by a rigid shift to reach best agreement between the
respective valence bands. For our comparisons we estimate
that the experimental VBM is located at 527.2 eV.
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III. THEORY

A. The Kramers-Heisenberg implementation

The coherent or (more precisely) wave vector conserving
contribution to RXES is described according to the Kramers-
Heisenberg theory.2,3 For a one-electron band-structure model
of the solid, the RXES can be described by the following cross
section:[

dσ

d�dω2

]
α,β

∝
∑
k∈BZ

∑
c,v

∣∣∣∣ 〈s|pα|ck〉〈vk|pβ |s〉
εck − εs − ω1 − i�m/2

∣∣∣∣
2

×δ(ω1 − ω2 − εck + εvk). (1)

Here, εik, i = (c,v) represent the single-particle band energies,
while ω1 corresponds to the incident (x-ray absorption) photon
energy, which excites a dipole transition (pα) from a core state
(labeled s here with the oxygen K edge in mind) with energy
εs to a conduction band state |ck〉, and ω2 corresponds to
the x-ray emission photon energy, resulting when a valence
electron from a band state |vk〉 (with the same wave vector)
dipole recombines with the core hole. The polarizations of
the x-rays are denoted by α and β, respectively. The sum is
over the full BZ and we used units in which h̄ = 1. The above
equation is obtained in the long-wavelength approximation,
neglecting the photon wave vectors, as will be discussed at the
end of this section.

The (full width at half maximum) lifetime broadening
factor of the core hole is given by �m, where m refers to a
specific intermediate state corresponding to the core hole and
an electron excited to a conduction band εck. The core hole
lifetime of order fs14 (�m ≈ 0.1 eV) ensures that for a given
x-ray absorption energy only band states in a narrow energy
range will contribute strongly when the energy denominator is
resonant.

The energy conservation δ function indicates that the
difference in energy between the absorbed and emitted photons
must equal a vertical interband transition (constant wave
vector). In other words, the x-ray absorption energy makes
a horizontal slice (constant energy) through the band-structure
energies and we then obtain contributions from the vertical
interband transitions for those k points and bands for which
the matrix elements are nonzero by the selection rules.
Therefore, the required calculation is essentially like that of
an interband optical dielectric function except that now the
matrix elements involve the resonant factor that contains a
product of two momentum matrix elements coupling both
the conduction and valence band states to the same core
state. Furthermore, we plot it not directly as function of the
interband energy but as function of ω2, the x-ray emission
energy.

In practice, it is difficult to calculate the absolute energy
of the core level with sufficient precision because of the
so-called relaxation energy. This term refers to the fact that
the orbitals adjust in the presence of the core hole. One
could attempt this with so-called 
SCF calculations, i.e.,
calculating the total energy difference between the system
without and with a localized hole using an impurity type
calculation. However, we can avoid this problem by allowing
ourselves to use an empirical alignment of the calculated
and experimental spectra as already mentioned above. In that

case, all we need in the calculation is the spectrum relative
to the highest XES energy, which corresponds to the VBM.
Thus we write ω1 = εVBM − εs + 
ω1, where εVBM is the
energy of the VBM. The x-ray emission energy is simimarly
written as ω2 = εVBM − εs + 
ω2. Note that in the RXES
spectrum 
ω2 < 0 and is measured relative to the VBM.
Returning to Eq. (1), the resonant factor can therefore be
written as (εck − εVBM − 
ω1 − i�/2)−1, and the δ function
as δ[
ω1 − 
ω2 − (εck − εvk)]. In the results below, the
XAS energy refers to 
ω1 and the XES energy refers
to 
ω2.

The optical matrix elements between core states and band
states are readily calculated in an all-electron method based on
a muffin-tin type augmentation method such as the linearized
augmented plane wave (LAPW) or linearized muffin-tin
orbital (LMTO) method. We here use a full-potential FP-
LMTO method.15,16 The contribution from each eigenstate to
partial waves in the muffin-tin sphere are readily obtained
from the eigenvectors of the band-structure problem and
the augmentation properties of the basis functions to radial
solutions inside each sphere. They contain so-called φ (the
radial wave function at the linearization energy) and its energy
derivative, φ̇ parts and in our particular implementation may
also contain so-called local orbital contributions17 for semicore
states. The integration over the Brillouin zone is similar to that
used in the calculation of the optical joint density of states;
in this case the integration is performed by a simple sampling
method with the δ function broadened by a Gaussian of about
0.2 eV.

A key approximation in our current implementation of
CRXES is that the two band states involved occur at the same
k point. This assumes the wave vector of the x-ray is negligible
compared to the size of the BZ. Strictly speaking, there is a
crystal momentum conservation δ function δk1+q1−k2−q2 , where
k1 is the k point of the conduction band state involved in the
x-ray absorption, q1 is the wave vector of the absorbed x-ray,
k2 is the k point of the valence band in the x-ray emission part
of the process, and q2 is the wave vector of the emitted x-ray.
Therefore, it is the difference between emitted and absorbed
x-ray wave vectors we assume to be negligible.18 The overall
crystal momentum conservation used here assumes that the
intermediate states with the core hole do not break the crystal
periodicity.

B. Band-structure calculation

The above methodology can be applied with different
underlying approximations to the potential for the band-
structure problem, the most commonly used of which is the
local density approximation for exchange and correlation.19,20

Here we use the quasiparticle self-consistent GW approach.21

In this approach, a nonlocal exchange-correlation potential

V QSGW
xc = 1

2

∑
nm

|ψm〉�{mn(εm) + mn(εn)}〈ψn|, (2)

is used, constructed from the GW self-energy operator, whose
matrix element mn(ε) is written in the basis of the eigenstates
of the independent particle Hamiltonian with this exchange
correlation potential. The latter is chosen such that the Kohn-
Sham eigenvalues converge to the quasiparticle excitation

205106-2



FIRST-PRINCIPLES CALCULATION OF RESONANT X- . . . PHYSICAL REVIEW B 83, 205106 (2011)

energies in the GW approximation. In the GW approxima-
tion, the self-energy is schematically written as iG0 × W

with G0 the one-electron Green’s function corresponding to
the Kohn-Sham Hamiltonian and W the screened Coulomb
interaction. The latter is given by W = ε−1v = (1 − �v)−1v

with v the bare Coulomb interaction and � the independent
particle polarizability � = −iG0 × G0, ε being the dielectric
function. Starting from the LDA Hamiltonian, one constructs a
GW self-energy, 0, from which a new Vxc is obtained through
Eq. (2), from which a new GW self-energy is obtained, and so
on, until self-consistency is reached.

Strictly speaking, the matrix elements in the Kramers-
Heisenberg formalism should be velocity matrix elements
and involve the commutator [r,H ] that is not purely the
momentum operator if a nonlocal potential is included.22

We ignore this complication for now, which corresponds
to making the usual long-wavelength approximation and is
consistent with our assumption of neglecting the momentum
of the photon. The QS-GW is implemented in terms of a
mixed basis set for expanding any two-particle operator (v,
W , �, ). This mixed basis includes plane waves projected
on the interstitial space and product basis functions of LMTOs
in the spheres.23 The QS-GW approach in this all-electron
implementation has been shown to give excellent and very
systematic results for a wide variety of systems. It slightly
overestimates most semiconductor band gaps, which can be
traced to the use of the random-phase approximation (RPA)
of the polarizability. One finds in practice that a mixture
of 0.8V QSGW

xc + 0.2V LDA
xc gives almost exact agreement with

the experimental band gaps. We obtain a band gap of
3.48 eV (cf. the experimental value of 3.4 eV24) for ZnO
in this way, not including spin-orbit coupling or the zero-point
motion corrections or exciton binding energy corrections.

The reader might wonder if expensive GW calculations
are necessary for describing RXES. As mentioned, the theory
involves interband transitions, so some correction to the gap
is necessary. However, to see the changes from k point to
k point, what matters most is the dispersion of the bands in
the valence and conduction bands separately. So, one could
probably obtain similar results by just adding a constant
gap shift to the LDA calculations. Nonetheless, the QS-GW
approximation is also expected to improve band widths and
dispersions compared to LDA.23 Not all conduction band shift
by the same amount between GW and LDA. Details about the
present GW calculations for ZnO, including the position of the
Zn 3d bands, can be found in Kotani et al.21

The QS-GW exchange-correlation potential can be re-
expanded from the eigenstates on a relatively coarse k mesh
to the LMTO basis set in real space via an inverse Bloch
transformation and then evaluated for a fine k-point mesh.
This capability is important here because we need a fine
k-point mesh to properly calculate the joint density of states
like interband transitions spectral function in CRXES. If the
k-point mesh is too coarse, the resonant factor is not effective in
picking out the resonant contributions. Symmetrization of the
matrix elements |〈s|pα|ck〉|2 and |〈s|pα|vk〉|2 is performed
over all point group elements, so the integration can still
be done over the irreducible part of the Brillouin zone. We
calculate the full 3 × 3 matrix of cross sections for different
incoming and outgoing x-ray polarizations.

C. Angular dependence and experimental geometry

From Eq. (1) we can see that dipole selection rules
may lead to an angular dependence of the RXES cross
section, which from here on we will write as Mαβ . More
specifically, if we restrict ourselves to K edge spectra, the
s-like core hole implies that only matrix elements to p-
orbital contributions to the conduction band and valence
band states enter the two dipole-moment matrix elements.
The indices α,β in Eq. (1) are the Cartesian components
of the momentum operators of the XAS and XES parts
of the process respectively, which are determined by the
polarizations ei , eo of the incoming and outgoing beam.
Depending on the crystal symmetry, several independent cross
sections exist. Let us call the matrix elements of the XAS
and XES momentum operators pXAS and pXES respectively,
which are both vectors. The angular dependence of the cross
sections is then determined by |ei · pXAS|2|pXES · eo|2. For
example, for a hexagonal crystal such as wurtzite ZnO,
there are four independent components, M11, M33, M13, and
M31, where 3 refers to the c axis of the crystal and 1 to
a direction perpendicular to the c axis. Note, however, that
the matrix M is not symmetric because the first index refers
to XAS and the second to the XES parts of the process,
which differ. In general, we may have up to nine independent
components.

While, from a theory point of view, it is natural to describe
the polarization directions relative to the crystalline symmetry
axes, from an experimental point of view, the polarization
directions are determined by the experimental geometry. Thus,
different fractions of the independent components of the
cross-section matrix M enter the experimentally measured
cross section. Essentially, we just need to know the projections
of the incoming and outgoing polarization unitvectors on
the relevant crystal axes. If eXAS is a unit vector along
the XAS momentum matrix element and eXES a unit vector
along the XES momentum matrix element, then we generally
have that

Mio = ∣∣ei · eXAS
α

∣∣2
Mα,β

∣∣eo · eXES
β

∣∣2
, (3)

where summation over repeated indices is understood.
The experimental conditions can be changed in a number

of ways: the polarization of the photons can be altered; the
position of the spectrometer can be changed; the sample can
be rotated; and different cleavage planes of the same sample
can be chosen. It is convenient here to consider three sets
of coordinates, the laboratory frame coordinates (x ′,y ′,z′),
the coordinates fixed to the sample with a specific cleavage
plane (x,y,z), and the coordinates corresponding to the natural
symmetry axis of the crystal (1,2,3).

As an example, we consider the setup at beamline X1B,
which is sketched in Fig. 1. The undulator at X1B pro-
vides light (incident along z′) polarized linearly along x ′.
The emission spectrometer is mounted perpendicular to the
incoming photon in the x ′ direction but does not itself resolve
polarization. Finally, the sample is mounted on a manipulator
that allows us to rotate the sample about y ′. On the other hand,
the z axis is defined to be normal to the cleavage plane of the
sample, the x axis is the intersection of the cleavage plane
with the photon plane (i.e., the plane spanned by the normal
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FIG. 1. (Color online) The X1B experimental geometry. The
laboratory coordinates x ′,y ′,z′ (black) and the sample coordinates
x,y,z (red) are shown. Photons (black arrows) are incident along z′

and emitted photons are collected along x ′. The angle between the
sample normal and the incident beam, θ , is freely changed during the
experiment.

to the sample and the incoming as well as the outgoing beam),
and y = y ′. In other words, we here always use so-called
p-polarized incoming x-rays. The orientation of the sample
is determined by θ , the angle between the incoming beam
and the normal to the sample, i.e., between z′ and z. We
thus have

ei · eXAS = eXAS
x cos θ + eXAS

z sin θ, (4)

eo · eXES = eXES
x sin θ cos φ + eXES

y sin φ

+ eXES
z cos θ cos φ, (5)

and we need to average over all possible emitted photon
polarization angles in the z′y ′ plane, φ. Since each polarization
factor enters modulo squared for input and output, integrating
over the cos2 φ and sin2 φ factors simply gives a constant
factor, 1/2, and we obtain for the total CRXES cross
section

M = 1
2 [sin2 θ cos2 θ (Mxx + Mzz) + sin4 θMzx (6)

+ cos4 θMxz + sin2 θMzy + cos2 θMxy]. (7)

However, here x, y, and z are not yet referred to the
crystalline symmetry axes but merely to the sample position
in the laboratory. For a general cleavage plane with Miller
indices (hkl), the surface normal is Ghkl/|Ghkl|, which can
be expressed in terms of the crystal symmetry axes, 1̂,2̂,3̂.
Let x̂ = ∑

i ai x̂i , ŷ = ∑
i bi x̂i , and ẑ = ∑

i ci x̂i . We can then
construct a matrix,

R =
⎛
⎝|a1|2 |a2|2 |a3|2

|b1|2 |b2|2 |b3|2
|c1|2 |c2|2 |c3|2

⎞
⎠ , (8)

which allows us to transform from xyz sample coordinates to
the crystal axes coordinates,

Mij = RiαMαβRT
βj . (9)

Combining these steps we write that the measured cross section
is given by

M ∝ (
cos2 θ,0, sin2 θ

)
RMRT

⎛
⎝ sin2 θ

1
cos2 θ

⎞
⎠ . (10)

In the specific case of a hexagonal crystal cleaved along
the c plane the R matrix is just a unit matrix, thus, taking
into account the symmetries M11 = M22 = M12 = M21, we
immediately obtain

M ∝ M11 cos2 θ (sin2 θ + 1) + M13 cos4 θ

+M31 sin2 θ (sin2 θ + 1) + M33 sin2 θ cos2 θ. (11)

For the M plane (11̄00) cleave, with [0001̄] oriented along x,
we obtain

M ∝ M11(1 + cos2 θ ) sin2 θ + M13 sin4 θ

+M31(1 + cos2 θ ) cos2 θ + M33 sin2 θ cos2 θ,

while for the M plane with [112̄0] oriented along x, we obtain

M ∝ M11 + M13. (12)

The angular dependence of the components is quite striking.
As θ is increased from zero, at normal incidence, to grazing
incidence the components that contribute to the measured
RXES vary significantly. For the c plane, there are strong
initial contributions from both M11 and M13. Note that one
cannot simply separate p⊥ = {px,py} (M11) from pz (M13)
emitted components for near normal incidence. This is because
the XES is not polarization filtered. In the midrange all
components contribute, while at large angles the contribution
from M31 dominates. For the M plane, the angular behavior
depends also on the in-plane sample orientation. When the c
axis [0001̄] is oriented toward the emission spectrometer the
situation is obviously a continuation of the c-plane geometry
(i.e., θ ′ = θ + π/2). However, when [112̄0] is oriented along
x there is no angular dependence at all.

The above derivations allow us to simulate any measured
spectra directly in terms of the calculated cross sections. On
the other hand, it is clear that if we consider n independent
choices of measurement angle and cleavage plane, we obtain
n equations from which we can extract the n(�9) unique cross
sections experimentally and from there can predict those for
other angles or cleavage planes. This is of use in cases where
the band structure cannot (yet) be calculated to high accuracy,
i.e., strongly correlated systems.

IV. RESULTS

A. Band structure

The band structure, weighted by p⊥ and pz, is shown in
Fig. 2. The bands and weightings agree well with previously
published results.10 In particular, the lowest conduction band
has low effective mass and strong p⊥ character along M-�-K
(the p⊥ orbitals lie in the M-�-K plane), pz character along �-
A (pz orbitals point in the �-A direction), and mixed character
along trajectories toward L and H. The top 6 eV of the valence
band is composed of O p-like states. Along �-A, the top two
weakly dispersing bands have p⊥ character, while the third
and fourth bands are pz like and disperse to a lower energy
near A. The flat bands at about −7 eV are Zn 3d derived, but
the weightings show that there is significant p-like character
to them.
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FIG. 2. (Color online) Intensity map of the calculated band structure. The intensity of each band is proportional to the pxy (left) and pz

(right) character of the band at that point in the Brillouin zone.

B. CRXES measurement and calculation

Figure 3 shows the CRXES for c plane wurtzite ZnO at
near normal (NN, θ = 20◦) and near grazing (NG θ = 70◦)
incidence. Both measured and calculated spectra are shown;
the calculated cross sections have been properly weighted for
experimental geometry. The calculations show more detailed
peak structure and stronger anisotropy and dispersion effects
than the experiments. At least in part, this is related to the
difficulties in extracting the coherent fraction CRXES from
the total XES which contains a significant incoherent fraction
(see above). Further, the measured RXES are broadened by
the emission spectrometer resolution of 0.37 eV.25

For the most part, however, good agreement is obtained
between theory and experiment. Indeed qualitative trends

in the spectra can be directly related to the band-structure
dispersion as discussed in Ref. 10. For NN measurements, the
incident photons will couple predominantly to the p⊥ orbitals
and thus any coherent emission must come from the M-�-K
part of the Brillouin zone, at least for low photon energy.
For NG incidence, the incident photons will couple to the pz

orbitals and thus the �-A part of the Brillouin zone. At higher
photon energies the conduction bands become less dispersive
and larger parts of the Brillouin zone start to contribute to
the CRXES. Above about 6 eV both NN and NG spectra
will see contributions from L-A-H, and at larger energies
still, above about 10 eV, it is very difficult, without ab initio
techniques, to isolate specific contributions to the measured
spectra.

FIG. 3. (Color online) Calculated (dashed red lines) and measured (solid black circles) ZnO (0001) CRXES at (a) near normal (20◦) and
(b) near grazing (70◦) incidence. Each spectrum is labeled with its excitation energy; photon energy is shown on the right, and energy relative
to the VBM is shown on the left.
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For NG incidence, only the p⊥ dominated bands will
contribute significantly to the emission because both the
s-polarized and p-polarized contributions are perpendicular
to the c axis of the crystal. Thus, to a first approximation, the
pz conduction bands and p⊥ valence bands from Fig. 2 can
be used to consider NG CRXES (this is the same as saying
that M31 dominates). However, for NN incidence, both the p⊥
and pz weighted valence bands will contribute to the emission
because we did not resolve the polarization of the emitted
x-rays (both M11 and M13 contribute).

We now describe the trends in the figure, starting with the
NG spectra. The experimental spectra consist of a strong peak
between 0 and −3 eV that at high incident energies develops
a high binding energy tail down to about −5 eV. These are the
so-called O 2p bands. The weak peak near about −8 eV is
due to emission from O 2p states hybridized with the Zn 3d

semicore states.
According to the band plots and our analysis of the angular

effects, the upper peak should initially derive from the upper
two valence bands along �-A, which approach each other
as we move toward A. However by the third and fourth
measured spectra the incident energy is already large enough
to be moving upward along A-H and A-L in the conduction
bands. Along these directions, the upper valence bands of p⊥
character disperse significantly downward and this explains the
basic downward dispersion of the upper peak in the CRXES.
We start picking up the bands near −5 eV by the time we are
at incident energies of 7.9 eV (4th measured spectrum from
the bottom). This is because near L and H the valence bands
near −5 eV have a significant p⊥ character. Near 10- to 11-eV
incident energy, the region near � starts contributing because
the third conduction band here has pz character. This leads to a
valence band contribution at low binding energy that broadens
the upper peak and shifts it to lower binding energy. Near
13-eV incident energy conduction bands near M acquire a pz

contribution and the corresponding valence bands contribute,
leading overall to broader and more complex upper peak. The
d-like bands also show a broader and stronger contribution at
this XAS energy.

As mentioned above, the situation is a little more compli-
cated for NN spectra as we must consider both the p⊥ and
pz valence bands. The pz contribution means we can right
away see a contribution from the lower valence bands near
−5 eV that disperse upward with increasing energy, while the
main peak from the VBM disperses downward. At an incident
energy of 9.0 eV the contribution is from M and largely from
K, where the highest valence band lies at about −3 eV. This
explains the strong downward shift in the main peak. At 10 eV
and above the bands are less dispersive and more regions of
the BZ contribute to the CRXES leading to more features in
the spectra, but there is clearly no contribution from �, as was
seen for the NG case.

While the spectra for the two geometries were not taken
at exactly the same excitation energies,26 it is clear (from the
calculation) that the XES shows rather smooth and continuous
changes with XAS excitation energy. The good agreement
between theory and experiment is further evidence that the
changes observed are truly due to the anisotropy and not to the
small changes in excitation energy between the two different
geometries.

C. Extracting band-structure information from CRXES

One somewhat overlooked feature of CRXES is the ability
to resolve conduction bands in both energy and k space. The
canonical example is to determine nature of the band gap of
a semiconductor via dispersion close to the CBM. If ZnO
is a direct-gap semiconductor the CRXES will disperse to
higher binding energy with increasing photon energy, while
the opposite will happen for an indirect-gap semiconductor.2

The former is clearly seen in the four lowest excitation energies
of both the NN and NG CRXES in Fig. 3.

It is also possible to extract information about higher
conduction bands. Note that for an incident photon energy
of 539.2 eV (11.9 eV above the VBM) a spectral shift to
lower binding energy is clearly resolved in the NG CRXES of
Fig. 3. This must be due to a contribution from the VBM,
given the similarity to the lowest excitation energy spectrum.
The VBM is at � and for NG CRXES the incoming photons
couple largely to bands of pz character; therefore, we can
deduce that there is a flat conduction band 11.9 eV above the
VBM located at � with pz character.

We have made these deductions independently of the
calculated band structure or complementary experimental
techniques, like x-ray absorption spectroscopy (XAS). This
method for locating conduction bands has advantages over
XAS. In coherent emission, the core hole is assumed not to
alter the valence and conduction band states at the time scale
of the combined processes of absorption and emission (see
Ref. 27). If this were not the case, the k-conservation rule
would be broken. In contrast, in XAS the usual final-state
rule implies that the conduction band states are relaxed in
the presence of the core hole localized at some particular
location in the crystal and hence are more representative of
the local density of states around a Z+1 impurity than of the
unperturbed material. So it is much more accurate to locate the
unperturbed conduction bands relative to the valence bands in
CRXES.

Figure 4 shows the four components of the calculated
CRXES for excitation energies of 3.8 and 11.9 eV. For both
excitation energies there is a strong peak due to the VBM

FIG. 4. The four unique CRXES cross sections, calculated for
excitation energies of 3.8 (solid lines) and 11.9 eV (dashed lines).
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at 0 eV. This peak is seen in all four components of the
3.8 eV spectrum but only in the M31 component of the 11.9 eV
spectrum. This is fully consistent with the conclusions from
the experiment above.

We turn now to the Zn 3d-derived part of the spectra, located
below −6 eV in Fig. 4. At 3.8 eV excitation energy the M13 and
M33 spectra have a double-peak structure. This can be traced
to the crystal field splitting of the 3d bands at �. Similar
dispersion has been observed in ARPES measurements of the
ZnO valence band.28 We note here that the final states of
CRXES and ARPES measurements differ markedly and that
CRXES measures what is effectively emission from O 2p

states hybridized with Zn 3d states, as opposed to directly
interrogating the 3d electrons, providing a complementary
method for investigating these bands.

V. CONCLUSION

We presented a general framework for calculating the K
edge CRXES of crystalline systems, including matrix elements
connecting the valence and conduction band states to the
core wave function, and full consideration of experimental

geometry and polarization effects. Explicit calculations of the
CRXES of wurtzite ZnO were compared to measurements.
Good agreement was obtained with experimental data. The
analysis of the angular effects in our RXES set up was
revisited and shows that because at present the emitted x-rays
is not polarization filtered the possibility to filter valence
bands according to the orbital weights is somewhat restricted.
However, the XAS polarization filtering and use of NN or NG
incidence still allows to focus on different portions of the BZ.
The entirely parameter free QS-GW results overall provide an
excellent account of the spectral features.
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